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Abstract. The branching rules between simple Lie algebras and their regular (maximal) simple
subalgebras are studied. Two types of recursion relations for anomalous relative multiplicities
are obtained. One of them is proved to be the factorized version of the other. The factorization
property is based on the existence of the set of weiblsgecific for each injection. The structure

of I' is easily deduced from the correspondence between the root systems of the algebra and
subalgebra. The recursion relations thus obtained give rise to a simple and effective algorithm for
branching rules. The details are illustrated by performing the explicit decomposition procedure
for the injectionAz @ u(1) — Ba.

1. Introduction

1.1. In elementary particle physics and especially in model building it is quite important
to have effective branching rules for Lie algebra representations. There are several simple
methods of decomposition appropriate for different types of injections, for example, the
Gelfand—Zeitlin method foA,,_; — A, B,_1 — B, andD,_; — D, [1,2]. In the general

case the most advanced investigation was performed by Moody and co-workers in a series
of works [3-5]. Their approach is based on the properties of Weyl orbits in weight diagrams
and the generating function technique [6].

In this paper we want to demonstrate that recursion relations for multiplicities of
subrepresentations can also be successfully used in the decomposition procedure. We
restrict the exposition to regular maximal injections of reductive subalgebras (composed
of semisimple ones and diagonalizable Abelian algebras), although it is possible to treat
analogously special injections and also non-maximal ones. For a simple ajgelnd its
regular maximal reductive subalgeliyahe problem is to evaluate the coefficientsin the
decomposition of an irreducible representation(g) (A is its highest weight)

LM()17 = ®unuL* (@) (1)
For any weightv of L* the total multiplicity, can be presented as the sum
m, =m, +n, 2

where m/ is the multiplicity induced by the subrepresentati@n.,n,L"(3) contained
in (1). The second term, in (2) is calledthe relative multiplicityof the weightv. Whenv
is from the dominant Weyl chamber its relative multiplicity coincides with the corresponding
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1076 V D Lyakhovsky and S Yu Melnikov

coefficient in the decomposition (1). The recursion relations for relative multiplicities for
the injectionAs @ u(1) — D4 were studied in [7]. It was shown that the considerable set
of multiplicities for intermediate weights mutually cancel and the final recursion formula is
suitable for calculations. As will be demonstrated below the general recursion relation for
regular injections can be formulated naturally in termsnbmalous relative multiplicities

n,. To define them consider the highest weights

M= {u|n, #0)

for the decomposition (1). For the subalgepret V be the Weyl group and, the half-sum
of the positive roots. The anomalous relative multiplicity(g, g, A, v) is the function

det(v)n, for{ineM|viu+p) —p=v}
;i(gvg’)"‘})zﬁv: (3)

0 elsewhere
defined on the weight space of As will be demonstrated, the general recursion relation for
regular injections can be naturally formulated in terms of anomalous relative multiplicities
n,.

The paper is organized as follows. The general formalism is presented in section 2.
The recursion relations thus obtained are based on the properties of the elementary ‘fan’
I", the special set of weights defined by the injectior> g. The structure of thé’s and
their basic properties are studied in detail. To demonstrate explicitly the rdleinfthe
recursion procedure we use the very simple example of the injedti@pu (1) — B,. Full
details of the application of the recursion formulae to the injeclar® u(1) — B, are
given in the appendix.

1.2. The notation used throughout the paper is as follows:

the simple Lie algebra;
the reductive regular subalgebra gf _
the corresponding sets of positive roots (note thas the system of positive
roots of the semisimple subalgebragh
the sets of basic roots;
the half-sums of positive roots fgr and g, respectively;
: the Weyl groups forA and A;
€(v): the determinants of the Weyl reflectionsandv;
: the Weyl chambers dominant with respectSt@and S;

the closures of the corresponding Weyl chambers;

the weight lattices fog andy;

the formal unital associative algebras assigned to the weight latticaad

£ are generated by the elemeafs whereg is the fundamental weight, and

the compositiore? - ¥ = ef17;

chL*: the formal character of the representatibh

VSRRV the elements of formal algebras associated with the sets of anomalous weights
for representationg”, L*, given by

V- }:exuoew@+m*ﬂ 4)

weW

D> ™%
B>

MmOl =D =Y
S s <@
5 0

P = Z €(v)e’Htn=r, (5)

veV
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For roots and weights of simple Lie algebras we use the stardbagis [9].

2. Recursion relations for regular injections

2.1. The initial decomposition (1) can be rewritten in terms of formal characters [11]

chL*=> "n,chL". (6)
"
Applying the Weyl formula [10]
wé
chpf=_— 7
HaeA(l —e) ( )

and taking into account the injectio?n — A one obtains the relation between the anomalous
elements¥* and¥* as

-1
(H(l— -“)> wh = "n, 0, ®)
A\A w

Using the basige® )< p, of the algebra€ one can expand both sides of relation (8). On the
left-hand side of the expansion of the first factor

-1
(H(l— “)) =) Kico§)e* ©)
A\A &

gives rise to the so-called Kostant—Heckman partition function [8]. Expression (9), together
with the equations (4) and (5), gives the desired expansion of (8). Now consider only the
weightsu from the dominant Weyl chambet, that is the anomalous weights with= e.
Comparing coefficients, one obtains the expression for the relative multipligitp terms

of the partition functionKyc:

=y e)Kzeg(wk 4 p) — (o + W) (10)
w

Note that relation (8) is valid on the whole weight lattieg. Thus one can rewrite it in the

form:
Znu\i“ = Znu 26(1))6“(”“+m_'3 = ZnNgeE (11)
m i veV &

Since all the weightdv(u + ) — p} are different the coefficients; here are just the
anomalous relative multiplicities (see equation (3)). Relation (11), together with (9) and
(4), shows that expression (10) is true in all pointsRpfwhenn is changed tai:

e = ) e(w)Kic, (w0 + p) = (o +)). (12)
w

We will use this formula to construct the recursion relation7for First consider expression
(12) forx = 0. In this caser; can be written explicitly as the multiplicity of the anomalous
weight diagram for the trivial subrepresentatibfx
e =Y €W)dy vpj = Y _ €(w)Kzcg(wp — (p +£)). (13)
1% w

One can extract the trivial term (withh = ¢) and obtain the recursion relation for the
partition functionKz,

Kice®) = =) KgcgE + w —1)p) + Y €(0)8c pup- (14)

Whe v
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Returning to expression (12), one easily comes to the conclusion that relation (14) induces
the recursion relation for anomalous relative multiplicities

e =— Y eW)iiesawp + Y €WEWSer vz wintp)—p (15)
Whe w,v

This relation can be used in the explicit calculations of multiplicifigsand n,, and in

some cases it is effective. But the necessity to estimate at each step the full set of probe
weights{¢ + (1 — w)p} can make the whole process quite cumbersome. Consider once
more equation (8). The previous derivation was based on the properties of the operator

(]’[A\z(l — e‘“))_l. Now we shall use its inverse and taking into account (11) rewrite the
relation (8) in the following form:

V=Y ew)e’ 0 = [ -e) ) nce. (16)
weW A\A 5
The first factor in (16) defines the finite set of weiglit€g C g) whose structure depends
only on the injectiorg C g,
[[a-e=1-7 signye”. (17)
A\A yel
In these terms equation (16) leads to the following recursion relation:
ﬁv = Z Sigr(y)ﬁv-&-y + Z E(w)(sv, w(A+p)—p- (18)
yel weW
Its efficiency depends mainly on the possibility of constructing tha'sgtc g) explicitly.

2.2. To reveal the structure df let us use the denominator identity [10]
[[a-e=w° (19)
aeA

to transform expression (17):

-1
1_[(1 —eY) =1-— ZSign(y)e_” — <l_[(1 _ e—ol)> g0 (20)

A\A yel ael
The anomalous element® is W-invariant and can be factorized with respectitac W:

wo = Z Ze(v x)eVFhe, (21)

xeX veV

Here X is the factor spac&/V. This allows us to preserit as the set of weight diagrams
of representationg.:

-1
1-— Z signy)e” =3 e) (H(l - ea)) > e(vyelrem ity
yel xeX aeh veV
=& ") e(x)chL®7. (22)
xeX

The element¥® multiplied by ([T,..(1 — €)1 gives the weight of the trivial
representatior.’ of g, while the samel® multiplied by ([T,ez (1 — ™))~ generates the
assemblyZ (g c g) of weight diagrams for representations @f To construct2(g C g)
one can use the auxiliary set(g C g)

Q=1{0, i, + iy ..oty + ...+ | € A\A m=cardA\ A)}.
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Fix the subsef2’ of dominant weights
Q=lweQ|weC).
Equip everyw € 2 with the sign
S(w) =8y, + ... +a;) = (=D, (23)

Reduce®’ to Q! cancelling every pair of weights i’ that has opposite signs. The
subset of maximal weights ife. is just the desired assembly of representatiBiig C g)
expressed in terms of their highest weights. Obviously gaehZ(g C g) has the form
& = xp — p and it can easily be seen tha§) = €(x).

Let ¢ be the weight diagram of the irrep®* with the highest weight € E(g C g).
Due to the relation (22) the s€%(g C g) can be obtained as the union of the diagrabis

- (56 L(J) qﬁ)\{O}. (24)

Thus to findT'(g C g) it is sufficient to construcE(g C g). As we have seen, the latter
depends only on the structure of the factor spitg/ and the weightg andp.

Now we shall illustrate the situation when different types of regular maximal injections
are treated. For the injectiof,_; ® u(1) — A, the dimension oW /V gives cardZ) =
(n+D!/n! =n+ 1. In the casesd\,_1 ® u(1) - B,, C,, D, the number of weights ifE
is proportional to powers of ‘2’

2" for A,—1 ®u(l) - B,
cardg) = { 2 for A,_1®u) — C,

-t for A,_1 ®u(l) > D,.

The elementary analysis of the orbits of the Weyl grdapon the space of faithful
representation o generated by the weight leads to the following results.

Lemma 1. Putag=(0,...,0) and let{ay, ..., «;} be the ordered sequences of roots:
{e1 —eni1,e0 —epi1, ..., €5 —epi1} for Ay, \ Ag,
{ex +er,e1+e3,...,e1+e,,e1,e1—en,e1—e€3,...,€1— ey} for Ag, \ Agp, ,
{e1+es,e1+e3,...,e1+e,, 2,61 —e2,e1—€3,...,e1— €} for Ac, \ Ac,_,
{e1+es,e1+e3,...,e1+e,,e1—er,e1—e€3,...,€1— €y} for Ap, \ Ap,_,

then the set for A,_; ® u(1) - A, contains the weights
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and forD,_1 ®u(l) - D,

52,1_12 (n — 1, 1, ...,1, —1)

Lemma 2. In the setsE(A,_1 ® u(1) - B,, C,, D,) the zero weight is trivial
&=(0,...,0
the first weight has the form
(1,0,0,...,0) for A,—1®u(l) - B,
&1 =(p1,p2,....pn) =13 (2,0,0,...,0) for A,_1®u(l) — C,
(1,1,0,...,0) for A,_1®u(l) - D,
while the others can be obtained from the following relations:
for A,_1®u(l) — B,
Ex=(p1+k,1,1,...,1,0,...,0 | = ! {fOl’An—l@M(l)%Cn
ket 2 forA,_1®u() — D,
Em = Eori = Exx + (&i)shife i=1..2-1

where for every = (q1,92,.-.,q,) the shifted weight(&;)snirx is defined with the
coordinates

(gi)Shif[ = (Os le q21 ceey anl)-

Note that in the framework of rules described in lemmas 1 and 2 theEsate totally
defined by the first weighy;.

To conclude the general exposition of the recursion properties,ofve show the
interdependence of the two recursion formulae (15) and (18).

Lemma 3. The recursion relation (15) can be factorized with respect to the subgfafp
W so that the summation over the factor spdicg V is replaced by the summation ovir

Proof. Use equation (18) to write down the recursion relation for the expression
Y vev €Wy a-vp @s a whole and extract the first term corresponding o e:

A== Y €@vavi— Y Y €W SigNy)iy vy

veV, v#e veV yel

+ Y €eE)Sura g woro—p

weW,veV

= Yo € SigNsa vy
V,TU{0}; (v, y)#(e,0)
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+ Z E(v)e(w)(sw—(l—v)ﬁ, w(h4-p)—p- (25)
weW,veV

Comparing this expression with (15) we see that by introdudihgne provides the
factorization in the first term of relation (15). Thus relation (18) can be céftledactorized
recursion formulafor anomalous relative multiplicities. d

In table 1 we bring together the information about this for the types of injections
described in this paper.

2.3. Both equations (15) and (18) provide effective tools to treat the branching rules
decompositions for maximal regular injections. One can easily estimate the relative
capacities of these relations for different pairs g@fand g. The result is that there
are five families of injections mostly favourable for relation (14,_1 ® u(1) — A,,
anlea M(l) - Bny Cn,]_@bt(l) - Cnr anl @M(l) - Dnr Anfl @M(l) - Bn- For
these five types the efficiency of equation (18) increases with the growthcmmpared
with that of (15). For the first four types the ordinary decomposition methods are suitable
(the Gelfand—Zeitlin procedure [1], for example). So we shall concentrate our attention on
the last family: A,_; ® u(1) — B,.

To show the application of the factorized formula (18) in detail we shall start with a
quite simple example. Consider the injectidn & u(1) — B,. Fix the basic roots oB;:

S(B2) = {1 = €1 — 2, a2 = €2}
and the fundamental weights:
{Br=e1, B2 = j(e1+ €2)}.
According to table 1 we have four highest weights in theBét; ® u(1) — By):
E(A1 0 u(l) - B2) ={(0,0),(1,0), (2 1), (2 2)}
Thus the setl'(A; & u(1) — B,) contains the weight diagrams of thé; @ u(1)

representationsb® = ([1], 1), &% = ([1],3), ®* = ([0],4). (The u(1l) generator is
normalized to have integer eigenvalues.)

r = <U qﬁ)\{o} — {V(Signy)} ={(1, 0)(+)’ (0, :|_)(+)7 (2, 1)(—)’ (1, 2)(—)’ (2, 2)(+)}_

el

To simplify the following steps it is convenient to perform further splitting of the diagram
of anomalous weights for the subrepresentatibfis This splitting is not unigue; one can
choose an arbitrary vectere C and the projections(x) are obtained as the scalar products

(kK —1), —¢) =a)

for every ¢ from to the weight latticeP,. The weightx is said to belong to the level
a(x). The ordering for the components i* thus induced guarantees an unambiguous
level by level application of the recursion formula (18).Af\ A contains no positive roots
orthogonal to the boundary @, the auxiliary vector may be placed in the closure 6f
as well.

Consider the irreducible representatibh of B, with the highest weight = (:;’, %).
The corresponding anomalous weight diagrdé contains eight vectors:

51 — —
WED =y =1{G, DT (=3 DTG =D T (=5 DT (=3, =T,

11 1\(—) 5 9\(—) 11 3\(+H)
(_75 é) a(_éa_é) 7(_75_2) }
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Table 1.
The setE(g C g) in terms of:
g—¢g highest weights Dynkin indices of ¢ signy (&)
Apm1@ul) - A, (0,0,...,0) ([0,0.....0].0)
Lo,..., 0,-1) ([1,0,...,0],1) +
(1,10....,0,-2 (0.1,....01.2 -
11,...,1,-n) (0,0,..., 0]. n) (—1rtt
Ap-1®u@) — B, (0,0,...,0 ([0,0,...,0],0
1,0,..., 0) (.o,..., 0], 1) +
2,1,0,...,0 (1,1,0,...,0],3) -
(2,2,0,...,0 ([0,2,0,...,0],4) +
(3,1,10,...,0 ([2,0,1,0,...,01,5 +
(3,2,1,0,...,0 (1,1,1,0,...,0],6) -
3,3,20,...,0 ([0,1,2,0,...,0]. 8 +

Ap1®ul) — Cy

Ap—1® u(l) — Dy,

(3,3,3,0,...,0)

(n,n,...,n,n—1)
(n,n,...,n)

0,0,...,0)
2,0,...,0
(3,1,0,...,0
(3,3,0,...,0
(4,1,1,0,...,0)
(4,3,1,0,...,0)
(4,4,2,0,...,0)
(4,4,4,0,...,0)

mn+1l....n+1n-1)
nm+1...,n+1)

0,0,...,0
1,1,0,...,0)
(2,1,1,0,...,0
(2,2,2,0,...,0
3,1,110,...,0)
3,2,21,0,...,0)
3,3,2,2,0,...,0)
3,3,330,...,0

n—=1,...n—-1,n—-2n-2)
mn—1....,n—1)

([0,0,3,0,...,0],9

([0,0,...,0,1],n%2 - 1)
([0,0,...,0],n?

([0,0....,0],0
([2,0,...,0],2
(2,1,0,...,01,4
([0,3,0,...,0],6)
([3,0,1,0,...,0],6)
(1,2,1,0,...,0],8
([0,2,2,0,...,0],10
([0,0,4,0,...,0],12

([0,0,...,2],n%4n -2
(0,0,...,0],n%+n)

([0,0,...,0],0
(0,1,0,...,0,2
(1,0,1,0,...,01,4
([0,0,2,0,...,0],6)
([2,0,0,1,0,...,0],6)
([1,0,1,1,0,...,0],8
([0,1,0,2,0,...,0], 10
(0,0,0,3,0,...,0],12

(0,...,0,1,0], n2—n—2)
(0,...,0],n2 —n)

(_1)1/2(n2+n)
(_1)1/2(n2+n+2)

L+ 1+ + 0+

(_1) l/2(nz+n)
(_1) 1/2(n2+n+2)

L+ 1+ + 1+

(71)1/2@27")
(_1) 1/2(7127n+2)

This is the case when splitting can be simplified. One can cheesegl, 1) € C so that
(, ) becomes proportional to the eigenvalues ofitt®) generator in th.* representation.
Applying the factorized formula to obtain the decomposition.6fwe are interested ir’s

within the Weyl chambelC. Thus for our example only the weights with non-negative
projection ona; = (1, —1) may have positive multiplicities,. At the zeroth level the
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g—>¢g

The setE(g C g) in terms of:

highest weights

Dynkin indices ofL*

signy (§)

By-1®u(l) - By,

Ch1®ud) - C,

Dy—1®u(l) - D,

n—-2,11...,1,0
(1,1,0,...,0)
(2,1,1,0,...,0)
(3,1,1,10,...,0

([0,0,...,1,0,n—2)
n-111...,1
n,1,1,...,1
n+1,11,...,1,0)

2n—-2,1,0,...,0
2n—-1,0,...,0

0,0,...,0)
(1,1,0,...,0)
(2,1,1,0,...,0)
(3,1,1,1,0,...,0)

n-11..,1
n+11...,1
n+21...,1,0

(21-1,1,0,...,0)
(21,0,...,0)

(n—-3,1,...,1,0,0)
(1,1,0,...,0)
(2,1,1,0,...,0)

([0,...,0,1,0,0],n — 3)

n-21,...,1,0
n—-1,1,...,1,-1)
n-11...,1,1
(n,1,...,1,0)
(n+1,1,...,1,0,0)

(2n-3,1,0,...,0)

(0,0,...,0)
([1,0,...,0],1)
(0,1,0,...,0],2)
([0,0,1,0,...,0],3)

(_1)n—l
(0,...,0,2],n — 1)
(0,...,0,2],n)
(0,...,1,0],n+1)

(L,0,....0L 212
(0.0,...,0],2n — 1)

(0,0,...,0],0
(1,0,...,0,1)
([0,1,0,...,0],2
([0,0,1,0,...,0],3

(0,...,0,1],n — 1)
(0,...,0,1],n + 1)
([0,...,0,1,0],n +2)

(L.0.....0L21—1)
(.....0]. 2n)

0,0,...,0)
([1,0,...,0],1)
([0,1,0,...,0],2

(71)}172
(,...,0,1,1,n -2
(0,...,0,2,0],n — 1)
(0,...,0,2],n — 1)
(o,...,0,1,1], n)
(0,...,1,0,0,n+ 1)

(L,0,....0. 21— 3)

([0,0,...,0],0
+

+

="
(_1)n+1
(71)n+2

="
(_1)n+l
(_l)n+2

+

([0,0,...,0],0
+

(_1);1—1
="
="
(71)n+l
(_1)n+2

+

result is trivial:

2n—-20,...,0 (0,...,0l,2n —2) -
gy =ng =1
n(_%,%) = -1

At the next level (called the first) one finds two pohﬂsfﬁ)(g,—%) and (2, 1), where

202
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equation (18) gives non-zero values fiyr.

ng-p=1 "

=1

Nlw
[N

Similarly on the following two levels one finds
ngp =1 ngep =2

and

I’l(l 1 = 2 n(gﬁg) =1

Due to the (reflection) symmetry of the weight diagram these four levels give sufficient
information to write down the final result:

Here the numbers in the square brackets are the Dynkin indices and the last term in
parenthesis is the eigenvalue of th€l) generator. Note that in performing this reduction

we do not need to take into account the anomalous weights outside the dominant chamber
C. Such additional decomposition of the recurrence property occurs only when the vectors
of the form{y + & | & € C, y € I'} do not reach the domain of anomalous weight§ dfi

P\ (P,NC).

In [7] an attempt was made to achieve the additional decomposition of the recurrence
property in the situation when the previous condition fails. The injectigm® u(1) — D4
was studied and the recurrence relation connecting only relative multiplicities was obtained.
It is slightly different from that described by equation (18). However, one faces great
difficulties in trying to obtain such an algorithm for other pairs of algebras.

In the appendix we give a more complicated example by considering the injection
Asz®du(l) — Bs. This demonstrates the efficiency of the decomposition algorithm based on
the factorized recurrence formula (18). The whole computation is relatively simple and can
easily be computerized. The non-maximal regular injections and special injections can be
treated similarly. The detailed study of recurrence relations in these cases will be presented
in a forthcoming publication.

Acknowledgments
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Appendix. The injection As@u(l) — By
The positive root systems for this maximal regular injection in the stangdakis can be
written as follows:

A(By) ={ei, ej —ex, e +ex}

A(A3) = fej — e} i jk=1...,4 j<k

A\ A = e, ¢ + et}
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According to lemma 2 the seE contains 16 irreducible representations of & u(1)
enumerated by their highest weighgts(i =0, ..., 15):

E(Az3 P u(l) — By)
= {(07 O? 07 O); (17 O’ 09 O); (27 17 01 0); (2, 27 O’ 0); (37 11 17 O); (37 2’ 1? O);
3,3,20);(3,3,30;(4,1,1,1);4,2,1,1);(43,2,1);4,3,3,1);

(4,4,2,2);(4,4,3,2);(4,4,4,3); (4,44, 4}.

In the ‘fan’ T'(A3 @ u(1) — Ba) the weightsy for each®® bear the same sign, thus the
signs can be attributed to the representatibhs

= {(([1,0,0], ; (+)), (([1, 1, 0], 3); (=), (([0, 2, 0], 4); (+)),
((12,0, 1], 5); (+)), (([1, 1, 1], 6); (), (([3, 0, O], 7); (=),
((10. 1, 2], 8); (). (([2. 1, 0]. 8): (+)). (([0, 0. 3], 9); ().
(([1. 1,1], 10); (=)). (([1. 0, 2], 1D; (+)). (([0, 2, 0], 12); (++)).

((10, 1, 1], 13); (-)). (([0, 0, 1], 15); (+)). (([0, 0, 0], 16); (=)} .

The non-trivial multiplicities ofy € I' must also be taken into account. To obtain the
splitting one can choose the vector= (1,1, 1,1). We write down explicitly only those
weightsy that describe the first and the second levels of decomposition:

F(As®ul) > By = | J ofisow
&.,5=1,..,15
= {(1,0,0,00",(0,1,0,00", (0,0, 1,0, (0,0,0, D", (2,1,0,0,
(2.0,1,007,(2,0,0, 1), (10,0, 2, (0, 1,0, 2™, (0, 0, 1, 2),
(1,2,0,007, (0,2, 1,0, (0,2,0, 1), (1,0, 2,0/, (0, 1,2,0),
(0,0,2,)7,2(1,1,1,07,2(1, 1,0, ), 21,0, 1, ), 20, 1, 1, h,

c (4,4,4, 9

Consider, for example, the irrep*(B,;) with A = (2,2, 1,0); dim L* = (1650. It has
11 levels. Due to the reflection symmetiky( ko, k3, kg) <> (—k1, —ko, —ks, —k4)) Of the
weight diagram it is sufficient to study only six of them.

In contrast to the previous case, the recurrence procedure cannot be performed separately
for the relative multiplicitiess,., that is for7, with « € C. Nevertheless, the calculations
involving the anomalous weights (in other Weyl chambers) can be simplified considerably
thanks to the following two considerations:

¢ In the level-by-level recursive procedure, after the evaluatiom iof C, the anomalous
relative weights in other points can be obtained using the Weyl gioup

e Using the exterior contour of one can easily fix the domain of the weight space
that can contribute to the relative multiplicities and pay no attention to the weights
outside this domain.
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For the injectionAsz ® u(1) — B4 only the anomalous weights with non-negative first
coordinate must be taken into account to obfdia C. Thus for every highest weight
obtained one must find only twelve anomalous pointd6fto be able to carry the recursion
to the next level. At the zeroth level, besides the highest weight

ne210 =Ne210 =1
one must also calculate (using the Weyl grddpthe anomalous relative multiplicities:

N2-12 =—1 Ho30 = —1 Npo-14 =1 No-232 =1
N -214 =—1 Nz =—1 Nas-12 =1 na040 =1
na0-15 = —1 N1-242 = —1 Na-215 = 1.

After this equation (18) can be applied directly to obtain the anomalous relative multiplicities
at the first level, among them being

ne200 =1 ne110 =1

The 24 anomalous points of these two representations fix the decomposition at the second
level:

n21,00 = 2 na110 =1 ne11-1 =1 ne2o0-1 =1

and so on. For example, at the third level equation (18) leads to the following relation for
the weight(l, 1, 0, 0):

H(1.1.00) = 1(1.1,0,00 = (1.1.1.0) + 721,000 — 212.21.0) — 7(1.3.1,0) = 2.
The final result is
[0,1,1,0] aseury = ([0,1,1], 5 & ([0,2,0], 4 & ([1,0,1], 4 © 2([1, 1, 0], 3)

®([0,0,1],3 ® ([1,0,2],3) ® ([0,2,1],3) & ([2,0,0], 2)
®2([0,1,0],2 ® ([0,0,2],2 ®2([1, 1, 1], 2 ® 2([1, 0, 0], 1)
©2([2,0,1], ) ®3([0,1,1]. h & ([1,1,2], ) & ([1,2,0], 1)
®([0,0,0], 0 @ 3([1, 0, 1], 0) ® 2([0, 2, 0], 0) ® ([2, 0, 2], 0)
®([2,1,0],0) @ ([0, 1, 2], 0 & 2([1, 0, 2], —1) ® 2([0, 0, 1], —1)
®2([1, 1, 1], —2) @ ([2,0,0], —2) & 2([0, 1, 0], —2) & ([0, 0, 2], —2)
®([1,2,0], -3) & ([2,0,1], —3) & ([1, 0, 0], —3) & 2([0, 1, 1], —3)
®([1,0,1], -4 & ([0, 2,0], -4 @ ([1, 1, 0], -5).
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