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Abstract. The branching rules between simple Lie algebras and their regular (maximal) simple
subalgebras are studied. Two types of recursion relations for anomalous relative multiplicities
are obtained. One of them is proved to be the factorized version of the other. The factorization
property is based on the existence of the set of weights0 specific for each injection. The structure
of 0 is easily deduced from the correspondence between the root systems of the algebra and
subalgebra. The recursion relations thus obtained give rise to a simple and effective algorithm for
branching rules. The details are illustrated by performing the explicit decomposition procedure
for the injectionA3 ⊕ u(1) → B4.

1. Introduction

1.1. In elementary particle physics and especially in model building it is quite important
to have effective branching rules for Lie algebra representations. There are several simple
methods of decomposition appropriate for different types of injections, for example, the
Gelfand–Zeitlin method forAn−1 → An, Bn−1 → Bn andDn−1 → Dn [1, 2]. In the general
case the most advanced investigation was performed by Moody and co-workers in a series
of works [3–5]. Their approach is based on the properties of Weyl orbits in weight diagrams
and the generating function technique [6].

In this paper we want to demonstrate that recursion relations for multiplicities of
subrepresentations can also be successfully used in the decomposition procedure. We
restrict the exposition to regular maximal injections of reductive subalgebras (composed
of semisimple ones and diagonalizable Abelian algebras), although it is possible to treat
analogously special injections and also non-maximal ones. For a simple algebrag and its
regular maximal reductive subalgebrag̃ the problem is to evaluate the coefficientsnµ in the
decomposition of an irreducible representationLλ(g) (λ is its highest weight)

Lλ(g)↓g̃ = ⊕µnµL̃
µ(g̃). (1)

For any weightν of Lλ the total multiplicitymν can be presented as the sum

mν = m′
ν + nν (2)

wherem′
ν is the multiplicity induced by the subrepresentation⊕µ>νnµL̃

µ(g̃) contained
in (1). The second termnν in (2) is calledthe relative multiplicityof the weightν. Whenν
is from the dominant Weyl chamber its relative multiplicity coincides with the corresponding
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1076 V D Lyakhovsky and S Yu Melnikov

coefficient in the decomposition (1). The recursion relations for relative multiplicities for
the injectionA3 ⊕ u(1) → D4 were studied in [7]. It was shown that the considerable set
of multiplicities for intermediate weights mutually cancel and the final recursion formula is
suitable for calculations. As will be demonstrated below the general recursion relation for
regular injections can be formulated naturally in terms ofanomalous relative multiplicities
ñν . To define them consider the highest weights

M = {µ | nµ 6= 0}
for the decomposition (1). For the subalgebrag̃ let V be the Weyl group and̃ρ, the half-sum
of the positive roots. The anomalous relative multiplicityñν(g, g̃, λ, ν) is the function

ñ(g, g̃, λ, ν) ≡ ñν =
{

det(v)nµ for {µ ∈ M | v(µ+ ρ̃)− ρ̃ = ν}
0 elsewhere

(3)

defined on the weight space ofg. As will be demonstrated, the general recursion relation for
regular injections can be naturally formulated in terms of anomalous relative multiplicities
ñν .

The paper is organized as follows. The general formalism is presented in section 2.
The recursion relations thus obtained are based on the properties of the elementary ‘fan’
0, the special set of weights defined by the injectiong̃ → g. The structure of the0’s and
their basic properties are studied in detail. To demonstrate explicitly the role of0 in the
recursion procedure we use the very simple example of the injectionA1 ⊕u(1) → B2. Full
details of the application of the recursion formulae to the injectionA3 ⊕ u(1) → B4 are
given in the appendix.

1.2. The notation used throughout the paper is as follows:

g: the simple Lie algebra;
g̃: the reductive regular subalgebra ofg;
1, 1̃: the corresponding sets of positive roots (note that1̃ is the system of positive

roots of the semisimple subalgebra iñg);
S, S̃: the sets of basic roots;
ρ, ρ̃: the half-sums of positive roots forg and g̃, respectively;
W,V : the Weyl groups for1 and1̃;
ε(w), ε(v): the determinants of the Weyl reflectionsw andv;
C, C̃: the Weyl chambers dominant with respect toS and S̃;

C, C̃: the closures of the corresponding Weyl chambers;
Pg, Pg̃: the weight lattices forg and g̃;
E , Ẽ : the formal unital associative algebras assigned to the weight lattices,E and

Ẽ are generated by the elementseβ , whereβ is the fundamental weight, and
the compositioneβ · eγ = eβ+γ ;

chLλ: the formal character of the representationLλ;
9λ, 9̃µ: the elements of formal algebras associated with the sets of anomalous weights

for representationsLλ, L̃µ, given by

9λ =
∑
w∈W

ε(w)ew(λ+ρ)−ρ (4)

9̃µ =
∑
v∈V

ε(v)ev(µ+ρ̃)−ρ̃ . (5)
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For roots and weights of simple Lie algebras we use the standarde-basis [9].

2. Recursion relations for regular injections

2.1. The initial decomposition (1) can be rewritten in terms of formal characters [11]

chLλ =
∑
µ

nµ chLµ. (6)

Applying the Weyl formula [10]

chLξ = 9ξ∏
α∈1(1 − e−α)

(7)

and taking into account the injectioñ1 → 1 one obtains the relation between the anomalous
elements9λ and9̃µ as(∏

1\1̃
(1 − e−α)

)−1

9λ =
∑
µ

nµ9̃
µ. (8)

Using the basis{eξ }ξ∈Pg of the algebraE one can expand both sides of relation (8). On the
left-hand side of the expansion of the first factor(∏

1\1̃
(1 − e−α)

)−1

=
∑
ξ

Kg̃⊂g(ξ)e−ξ (9)

gives rise to the so-called Kostant–Heckman partition function [8]. Expression (9), together
with the equations (4) and (5), gives the desired expansion of (8). Now consider only the
weightsµ from the dominant Weyl chamber̃C, that is the anomalous weights withv = e.
Comparing coefficients, one obtains the expression for the relative multiplicitynµ in terms
of the partition functionKg̃⊂g:

nµ =
∑
W

ε(w)Kg̃⊂g(w(λ+ ρ)− (ρ + µ)). (10)

Note that relation (8) is valid on the whole weight latticePg. Thus one can rewrite it in the
form: ∑

µ

nµ9̃
µ =

∑
µ

nµ
∑
v∈V

ε(v)ev(µ+ρ̃)−ρ̃ =
∑
ξ

ñξe
ξ . (11)

Since all the weights{v(µ + ρ̃) − ρ̃} are different the coefficients̃nξ here are just the
anomalous relative multiplicities (see equation (3)). Relation (11), together with (9) and
(4), shows that expression (10) is true in all points ofPg whenn is changed tõn:

ñξ =
∑
W

ε(w)Kg̃⊂g(w(λ+ ρ)− (ρ + ξ)). (12)

We will use this formula to construct the recursion relation forñξ . First consider expression
(12) for λ = 0. In this casẽnξ can be written explicitly as the multiplicity of the anomalous
weight diagram for the trivial subrepresentationL̃0:

ñξ =
∑
V

ε(v)δν, vρ̃−ρ̃ =
∑
W

ε(w)Kg̃⊂g(wρ − (ρ + ξ)). (13)

One can extract the trivial term (withw = e) and obtain the recursion relation for the
partition functionKg̃⊂g

Kg̃⊂g(ξ) = −
∑
W\e

Kg̃⊂g(ξ + (w − 1)ρ)+
∑
V

ε(v)δξ,ρ−vρ. (14)
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Returning to expression (12), one easily comes to the conclusion that relation (14) induces
the recursion relation for anomalous relative multiplicities

ñξ = −
∑
W\e

ε(w)̃nξ+(1−w)ρ +
∑
W,V

ε(w)ε(v)δξ+(1−v)ρ̃, w(λ+ρ)−ρ . (15)

This relation can be used in the explicit calculations of multiplicitiesñν and nµ and in
some cases it is effective. But the necessity to estimate at each step the full set of probe
weights {ξ + (1 − w)ρ} can make the whole process quite cumbersome. Consider once
more equation (8). The previous derivation was based on the properties of the operator(∏

1\1̃(1 − e−α)
)−1

. Now we shall use its inverse and taking into account (11) rewrite the
relation (8) in the following form:

9λ =
∑
w∈W

ε(w)ew(λ+ρ)−ρ =
∏
1\1̃

(1 − e−α) ·
∑
ξ

ñξe
ξ . (16)

The first factor in (16) defines the finite set of weights0(g̃ ⊂ g) whose structure depends
only on the injectioñg ⊂ g,∏

1\1̃
(1 − e−α) = 1 −

∑
γ∈0

sign(γ )e−γ . (17)

In these terms equation (16) leads to the following recursion relation:

ñν =
∑
γ∈0

sign(γ )̃nν+γ +
∑
w∈W

ε(w)δν, w(λ+ρ)−ρ. (18)

Its efficiency depends mainly on the possibility of constructing the set0(g̃ ⊂ g) explicitly.

2.2. To reveal the structure of0 let us use the denominator identity [10]∏
α∈1

(1 − e−α) = 90 (19)

to transform expression (17):∏
1\1̃

(1 − e−α) = 1 −
∑
γ∈0

sign(γ )e−γ =
(∏
α∈1̃

(1 − e−α)
)−1

·90 (20)

The anomalous element90 is W -invariant and can be factorized with respect toV ⊂ W :

90 =
∑
x∈X

∑
v∈V

ε(v · x)e(v·x−1)ρ . (21)

HereX is the factor spaceW/V . This allows us to present0 as the set of weight diagrams
of representations̃L:

1 −
∑
γ∈0

sign(γ )e−γ =
∑
x∈X

ε(x)

(∏
α∈1̃

(1 − e−α)
)−1 ∑

v∈V
ε(v)e(vxρ−ρ̃+(ρ̃−ρ))

= ẽρ−ρ ∑
x∈X

ε(x) chL̃(xρ−ρ̃) . (22)

The element90 multiplied by (
∏
α∈1(1 − e−α))−1 gives the weight of the trivial

representationL0 of g, while the same90 multiplied by (
∏
α∈1̃(1 − e−α))−1 generates the

assembly4(g̃ ⊂ g) of weight diagrams for representations ofg̃. To construct4(g̃ ⊂ g)

one can use the auxiliary set�(g̃ ⊂ g)

� = {0, αi1, αi1 + αi2, . . . , αi1 + . . .+ αim | αil ∈ 1 \ 1̃,m = card(1 \ 1̃)}.



Recursion relations and branching rules 1079

Fix the subset�′ of dominant weights

�′ = {ω ∈ � | ω ∈ C̃}.
Equip everyω ∈ � with the sign

δ(ω) = δ(αi1 + . . .+ αik ) = (−1)k+1. (23)

Reduce�′ to �′
r cancelling every pair of weights in�′ that has opposite signs. The

subset of maximal weights in�′
r is just the desired assembly of representations4(g̃ ⊂ g)

expressed in terms of their highest weights. Obviously eachξ ∈ 4(g̃ ⊂ g) has the form
ξ = xρ − ρ and it can easily be seen thatδ(ξ) = ε(x).

Let 8ξ be the weight diagram of the irrep̃Lξ with the highest weightξ ∈ 4(g̃ ⊂ g).
Due to the relation (22) the set0(g̃ ⊂ g) can be obtained as the union of the diagrams8ξ

0 =
( ⋃
ξ∈4(g̃⊂g)

8ξ

)∖
{0}. (24)

Thus to find0(g̃ ⊂ g) it is sufficient to construct4(g̃ ⊂ g). As we have seen, the latter
depends only on the structure of the factor spaceW/V and the weightsρ and ρ̃.

Now we shall illustrate the situation when different types of regular maximal injections
are treated. For the injectionAn−1 ⊕ u(1) → An the dimension ofW/V gives card(4) =
(n+ 1)!/n! = n+ 1. In the casesAn−1 ⊕ u(1) → Bn,Cn,Dn the number of weights in4
is proportional to powers of ‘2’:

card(4) =


2n for An−1 ⊕ u(1) → Bn

2n for An−1 ⊕ u(1) → Cn

2n−1 for An−1 ⊕ u(1) → Dn.

The elementary analysis of the orbits of the Weyl groupV on the space of faithful
representation ofW generated by the weightρ leads to the following results.

Lemma 1. Putα0 ≡ (0, . . . ,0) and let{α1, . . . , αs} be the ordered sequences of roots:

{e1 − en+1, e2 − en+1, . . . , en − en+1} for 1An \1An−1

{e1 + e2, e1 + e3, . . . , e1 + en, e1, e1 − e2, e1 − e3, . . . , e1 − en} for 1Bn \1Bn−1

{e1 + e2, e1 + e3, . . . , e1 + en, 2e1, e1 − e2, e1 − e3, . . . , e1 − en} for 1Cn \1Cn−1

{e1 + e2, e1 + e3, . . . , e1 + en, e1 − e2, e1 − e3, . . . , e1 − en} for 1Dn \1Dn−1

then the set4 for An−1 ⊕ u(1) → An contains the weights

ξk =
k∑

j=0

αj k = 0, . . . , n

while for Bn−1 ⊕ u(1) → Bn andCn−1 ⊕ u(1) → Cn

ξk =
k∑

j=0

αj k = 0, . . . ,2n− 1
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and forDn−1 ⊕ u(1) → Dn

ξk =
k∑

j=0

αj k = 0, . . . ,2n− 2

ξ2n−1 = (n− 1, 1, . . . ,1,−1).

Lemma 2. In the sets4(An−1 ⊕ u(1) → Bn,Cn,Dn) the zero weight is trivial

ξ0 = (0, . . . ,0)

the first weight has the form

ξ1 = (p1, p2, . . . , pn) =


(1, 0, 0, . . . ,0) for An−1 ⊕ u(1) → Bn

(2, 0, 0, . . . ,0) for An−1 ⊕ u(1) → Cn

(1, 1, 0, . . . ,0) for An−1 ⊕ u(1) → Dn

while the others can be obtained from the following relations:

ξ2k = (p1 + k, 1, 1, . . . ,1︸ ︷︷ ︸
k+l

, 0, . . . ,0) l =


1

{
for An−1 ⊕ u(1) → Bn

for An−1 ⊕ u(1) → Cn

2 for An−1 ⊕ u(1) → Dn

ξm = ξ2k+i = ξ2k + (ξi)shift i = 1, . . . ,2k − 1

where for everyξi = (q1, q2, . . . , qn) the shifted weight(ξi)shift is defined with the
coordinates

(ξi)shift = (0, q1, q2, . . . , qn−1).

Note that in the framework of rules described in lemmas 1 and 2 the sets4 are totally
defined by the first weightξ1.

To conclude the general exposition of the recursion properties ofñµ we show the
interdependence of the two recursion formulae (15) and (18).

Lemma 3. The recursion relation (15) can be factorized with respect to the subgroupV of
W so that the summation over the factor spaceW \V is replaced by the summation over0.

Proof. Use equation (18) to write down the recursion relation for the expression∑
v∈V ε(v)̃nν+(1−v)ρ̃ as a whole and extract the first term corresponding tov = e:

ñν = −
∑

v∈V,v 6=e
ε(v)̃nν+(1−v)ρ̃ −

∑
v∈V

∑
γ∈0

ε(v) sign(γ )̃nν+(1−v)ρ̃+γ

+
∑

w∈W,v∈V
ε(v)ε(w)δν+(1−v)ρ̃, w(λ+ρ)−ρ

=
∑

V,0∪{0};(v,γ )6=(e,0)
ε(v) sign(γ )̃nν+(1−v)ρ̃+γ



Recursion relations and branching rules 1081

+
∑

w∈W,v∈V
ε(v)ε(w)δν+(1−v)ρ̃, w(λ+ρ)−ρ. (25)

Comparing this expression with (15) we see that by introducing0 one provides the
factorization in the first term of relation (15). Thus relation (18) can be calledthe factorized
recursion formulafor anomalous relative multiplicities. �

In table 1 we bring together the information about the4’s for the types of injections
described in this paper.

2.3. Both equations (15) and (18) provide effective tools to treat the branching rules
decompositions for maximal regular injections. One can easily estimate the relative
capacities of these relations for different pairs ofg and g̃. The result is that there
are five families of injections mostly favourable for relation (1):An−1 ⊕ u(1) → An,
Bn−1 ⊕ u(1) → Bn, Cn−1 ⊕ u(1) → Cn, Dn−1 ⊕ u(1) → Dn, An−1 ⊕ u(1) → Bn. For
these five types the efficiency of equation (18) increases with the growth inn compared
with that of (15). For the first four types the ordinary decomposition methods are suitable
(the Gelfand–Zeitlin procedure [1], for example). So we shall concentrate our attention on
the last family:An−1 ⊕ u(1) → Bn.

To show the application of the factorized formula (18) in detail we shall start with a
quite simple example. Consider the injectionA1 ⊕ u(1) → B2. Fix the basic roots ofB2:

S(B2) = {α1 = e1 − e2, α2 = e2}
and the fundamental weights:

{β1 = e1, β2 = 1
2(e1 + e2)}.

According to table 1 we have four highest weights in the set4(A1 ⊕ u(1) → B2):

4(A1 ⊕ u(1) → B2) = {(0, 0), (1, 0), (2, 1), (2, 2)}
Thus the set0(A1 ⊕ u(1) → B2) contains the weight diagrams of theA1 ⊕ u(1)
representations8ξ1 = ([1], 1), 8ξ2 = ([1], 3), 8ξs = ([0], 4). (The u(1) generator is
normalized to have integer eigenvalues.)

0 =
(⋃
ξ∈4

8ξ

)∖
{0} = {γ (signγ )} = {(1, 0)(+), (0, 1)(+), (2, 1)(−), (1, 2)(−), (2, 2)(+)}.

To simplify the following steps it is convenient to perform further splitting of the diagram
of anomalous weights for the subrepresentationsL̃µ. This splitting is not unique; one can
choose an arbitrary vectorε ∈ C and the projectionsa(κ) are obtained as the scalar products

〈(κ − λ),−ε〉 = a(κ)

for every κ from to the weight latticePg. The weightκ is said to belong to the level
a(κ). The ordering for the components in9λ thus induced guarantees an unambiguous
level by level application of the recursion formula (18). If1 \ 1̃ contains no positive roots
orthogonal to the boundary ofC, the auxiliary vectorε may be placed in the closure ofC
as well.

Consider the irreducible representationLλ of B2 with the highest weightλ = ( 5
2,

1
2).

The corresponding anomalous weight diagram9λ contains eight vectors:

9( 5
2 ,

1
2 ) = {ψε(w)} = {

( 5
2,

1
2)
(+), (− 1

2,
7
2)
(−), ( 5

2,− 3
2)
(−), (− 5

2,
7
2)
(+), (− 1

2,− 9
2)
(+),

(− 11
2 ,

1
2)
(−), (− 5

2,− 9
2)
(−), (− 11

2 ,− 3
2)
(+)} .
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Table 1.

The set4(g̃ ⊂ g) in terms of:

g̃ → g highest weightsξ Dynkin indices ofL̃ξ sign γ (ξ)

An−1 ⊕ u(1) → An (0, 0, . . . ,0) ([0, 0, . . . ,0], 0)
(1, 0, . . . ,0,−1) ([1, 0, . . . ,0], 1) +
(1, 1, 0, . . . ,0,−2) ([0, 1, . . . ,0], 2) −

.

.

.
.
.
.

.

.

.

(1, 1, . . . ,1,−n) ([0, 0, . . . ,0], n) (−1)n+1

An−1 ⊕ u(1) → Bn (0, 0, . . . ,0) ([0, 0, . . . ,0], 0)
(1, 0, . . . ,0) ([1, 0, . . . ,0], 1) +
(2, 1, 0, . . . ,0) ([1, 1, 0, . . . ,0], 3) −
(2, 2, 0, . . . ,0) ([0, 2, 0, . . . ,0], 4) +
(3, 1, 1, 0, . . . ,0) ([2, 0, 1, 0, . . . ,0], 5) +
(3, 2, 1, 0, . . . ,0) ([1, 1, 1, 0, . . . ,0], 6) −
(3, 3, 2, 0, . . . ,0) ([0, 1, 2, 0, . . . ,0], 8) +
(3, 3, 3, 0, . . . ,0) ([0, 0, 3, 0, . . . ,0], 9) −

.

.

.
.
.
.

.

.

.

(n, n, . . . , n, n− 1) ([0, 0, . . . ,0, 1], n2 − 1) (−1)1/2(n
2+n)

(n, n, . . . , n) ([0, 0, . . . ,0], n2) (−1)1/2(n
2+n+2)

An−1 ⊕ u(1) → Cn (0, 0, . . . ,0) ([0, 0, . . . ,0], 0)
(2, 0, . . . ,0) ([2, 0, . . . ,0], 2) +
(3, 1, 0, . . . ,0) ([2, 1, 0, . . . ,0], 4) −
(3, 3, 0, . . . ,0) ([0, 3, 0, . . . ,0], 6) +
(4, 1, 1, 0, . . . ,0) ([3, 0, 1, 0, . . . ,0], 6) +
(4, 3, 1, 0, . . . ,0) ([1, 2, 1, 0, . . . ,0], 8) −
(4, 4, 2, 0, . . . ,0) ([0, 2, 2, 0, . . . ,0], 10) +
(4, 4, 4, 0, . . . ,0) ([0, 0, 4, 0, . . . ,0], 12) −

.

.

.
.
.
.

.

.

.

(n+ 1, . . . , n+ 1, n− 1) ([0, 0, . . . ,2], n2 + n− 2) (−1)1/2(n
2+n)

(n+ 1, . . . , n+ 1) ([0, 0, . . . ,0], n2 + n) (−1)1/2(n
2+n+2)

An−1 ⊕ u(1) → Dn (0, 0, . . . ,0) ([0, 0, . . . ,0], 0)
(1, 1, 0, . . . ,0) ([0, 1, 0, . . . ,0], 2) +
(2, 1, 1, 0, . . . ,0) ([1, 0, 1, 0, . . . ,0], 4) −
(2, 2, 2, 0, . . . ,0) ([0, 0, 2, 0, . . . ,0], 6) +
(3, 1, 1, 1, 0, . . . ,0) ([2, 0, 0, 1, 0, . . . ,0], 6) +
(3, 2, 2, 1, 0, . . . ,0) ([1, 0, 1, 1, 0, . . . ,0], 8) −
(3, 3, 2, 2, 0, . . . ,0) ([0, 1, 0, 2, 0, . . . ,0], 10) +
(3, 3, 3, 3, 0, . . . ,0) ([0, 0, 0, 3, 0, . . . ,0], 12) −

.

.

.
.
.
.

.

.

.

(n−1,. . ., n−1, n−2,n−2) ([0,. . .,0, 1, 0], n2−n−2) (−1)1/2(n
2−n)

(n− 1, . . . , n− 1) ([0, . . . ,0], n2 − n) (−1)1/2(n
2−n+2)

This is the case when splitting can be simplified. One can chooseε = (1, 1) ∈ C so that
〈κ, ε〉 becomes proportional to the eigenvalues of theu(1) generator in theLλ representation.
Applying the factorized formula to obtain the decomposition ofLλ we are interested inκ ’s

within the Weyl chamber̃C. Thus for our example only the weights with non-negative
projection onα1 = (1,−1) may have positive multiplicitiesnκ . At the zeroth level the
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Table 1. (Continued)

The set4(g̃ ⊂ g) in terms of:

g̃ → g highest weightsξ Dynkin indices ofL̃ξ sign γ (ξ)

Bn−1 ⊕ u(1) → Bn (n− 2, 1, 1, . . . ,1, 0) (0, 0, . . . ,0) ([0, 0, . . . ,0], 0)
(1, 1, 0, . . . ,0) ([1, 0, . . . ,0], 1) +
(2, 1, 1, 0, . . . ,0) ([0, 1, 0, . . . ,0], 2) −
(3, 1, 1, 1, 0, . . . ,0) ([0, 0, 1, 0, . . . ,0], 3) +

.

.

.
.
.
.

.

.

.

([0, 0, . . . ,1, 0], n− 2) (−1)n−1

(n− 1, 1, 1, . . . ,1) ([0, . . . ,0, 2], n− 1) (−1)n

(n, 1, 1, . . . ,1) ([0, . . . ,0, 2], n) (−1)n+1

(n+ 1, 1, 1, . . . ,1, 0) ([0, . . . ,1, 0], n+ 1) (−1)n+2

.

.

.
.
.
.

.

.

.

(2n− 2, 1, 0, . . . ,0) ([1, 0, . . . ,0], 2n− 2) −
(2n− 1, 0, . . . ,0) ([0, 0, . . . ,0], 2n− 1) +

Cn−1 ⊕ u(1) → Cn (0, 0, . . . ,0) ([0, 0, . . . ,0], 0)
(1, 1, 0, . . . ,0) ([1, 0, . . . ,0], 1) +
(2, 1, 1, 0, . . . ,0) ([0, 1, 0, . . . ,0], 2) −
(3, 1, 1, 1, 0, . . . ,0) ([0, 0, 1, 0, . . . ,0], 3) +

.

.

.
.
.
.

.

.

.

(n− 1, 1, . . . ,1) ([0, . . . ,0, 1], n− 1) (−1)n

(n+ 1, 1, . . . ,1) ([0, . . . ,0, 1], n+ 1) (−1)n+1

(n+ 2, 1, . . . ,1, 0) ([0, . . . ,0, 1, 0], n+ 2) (−1)n+2

.

.

.
.
.
.

.

.

.

(2n− 1, 1, 0, . . . ,0) ([1, 0, . . . ,0], 2n− 1) −
(2n, 0, . . . ,0) ([0, . . . ,0], 2n) +

Dn−1 ⊕ u(1) → Dn (n− 3, 1, . . . ,1, 0, 0) (0, 0, . . . ,0) ([0, 0, . . . ,0], 0)
(1, 1, 0, . . . ,0) ([1, 0, . . . ,0], 1) +
(2, 1, 1, 0, . . . ,0) ([0, 1, 0, . . . ,0], 2) −

.

.

.
.
.
.

.

.

.

([0, . . . ,0, 1, 0, 0], n− 3) (−1)n−2

(n− 2, 1, . . . ,1, 0) ([0, . . . ,0, 1, 1], n− 2) (−1)n−1

(n− 1, 1, . . . ,1,−1) ([0, . . . ,0, 2, 0], n− 1) (−1)n

(n− 1, 1, . . . ,1, 1) ([0, . . . ,0, 2], n− 1) (−1)n

(n, 1, . . . ,1, 0) ([0, . . . ,0, 1, 1], n) (−1)n+1

(n+ 1, 1, . . . ,1, 0, 0) ([0, . . . ,1, 0, 0], n+ 1) (−1)n+2

.

.

.
.
.
.

.

.

.

(2n− 3, 1, 0, . . . ,0) ([1, 0, . . . ,0], 2n− 3) +
(2n− 2, 0, . . . ,0) ([0, . . . ,0], 2n− 2) −

result is trivial:

ñ( 5
2 ,

1
2 )

= n( 5
2 ,

1
2 )

= 1

ñ(− 1
2 ,

7
2 )

= −1.

At the next level (called the first) one finds two points iñC, ( 5
2,− 1

2) and ( 3
2,

1
2), where
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equation (18) gives non-zero values forñκ .

n( 5
2 ,− 1

2 )
= 1 n( 3

2 ,
1
2 )

= 1.

Similarly on the following two levels one finds

n( 1
2 ,

1
2 )

= 1 n( 3
2 ,− 1

2 )
= 2

and

n( 1
2 ,− 1

2 )
= 2 n( 3

2 ,− 3
2 )

= 1.

Due to the (reflection) symmetry of the weight diagram these four levels give sufficient
information to write down the final result:

[2, 1]↓A1⊕u(1) = ([2], 3)⊕ ([1], 2)⊕ ([3], 2)⊕ 2([2], 1)⊕ ([0], 1)⊕ 2([1], 0)⊕ ([3], 0)

⊕2([2],−1)⊕ ([0],−1)⊕ ([3],−2)⊕ ([1],−2)⊕ ([2], 3).

Here the numbers in the square brackets are the Dynkin indices and the last term in
parenthesis is the eigenvalue of theu(1) generator. Note that in performing this reduction
we do not need to take into account the anomalous weights outside the dominant chamber

C̃. Such additional decomposition of the recurrence property occurs only when the vectors

of the form{γ + ξ | ξ ∈ C̃, γ ∈ 0} do not reach the domain of anomalous weights ofg̃ in

Pg \ (Pg ∩ C̃).
In [7] an attempt was made to achieve the additional decomposition of the recurrence

property in the situation when the previous condition fails. The injectionA3 ⊕ u(1) → D4

was studied and the recurrence relation connecting only relative multiplicities was obtained.
It is slightly different from that described by equation (18). However, one faces great
difficulties in trying to obtain such an algorithm for other pairs of algebras.

In the appendix we give a more complicated example by considering the injection
A3⊕u(1) → B4. This demonstrates the efficiency of the decomposition algorithm based on
the factorized recurrence formula (18). The whole computation is relatively simple and can
easily be computerized. The non-maximal regular injections and special injections can be
treated similarly. The detailed study of recurrence relations in these cases will be presented
in a forthcoming publication.
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Appendix. The injection A3⊕u(1) → B4

The positive root systems for this maximal regular injection in the standarde-basis can be
written as follows:

1(B4) = {ei, ej − ek, ej + ek}
1̃(A3) = {ej − ek}
1 \ 1̃ = {ei, ej + ek}

 i, j, k = 1, . . . ,4 j < k.
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According to lemma 2 the set4 contains 16 irreducible representations ofA3 ⊕ u(1)
enumerated by their highest weightsξi (i = 0, . . . ,15):

4(A3 ⊕ u(1) → B4)

= {(0, 0, 0, 0); (1, 0, 0, 0); (2, 1, 0, 0); (2, 2, 0, 0); (3, 1, 1, 0); (3, 2, 1, 0);
(3, 3, 2, 0); (3, 3, 3, 0); (4, 1, 1, 1); (4, 2, 1, 1); (4, 3, 2, 1); (4, 3, 3, 1);
(4, 4, 2, 2); (4, 4, 3, 2); (4, 4, 4, 3); (4, 4, 4, 4)} .

In the ‘fan’ 0(A3 ⊕ u(1) → B4) the weightsγ for each8ξs bear the same sign, thus the
signs can be attributed to the representationsL̃ξs :

{L̃ξs ; sign(γ )}s=1,...,15

= {(([1, 0, 0], 1); (+)), (([1, 1, 0], 3); (−)), (([0, 2, 0], 4); (+)),
(([2, 0, 1], 5); (+)), (([1, 1, 1], 6); (−)), (([3, 0, 0], 7); (−)),
(([0, 1, 2], 8); (+)), (([2, 1, 0], 8); (+)), (([0, 0, 3], 9); (−)),
(([1, 1, 1], 10); (−)), (([1, 0, 2], 11); (+)), (([0, 2, 0], 12); (+)),
(([0, 1, 1], 13); (−)), (([0, 0, 1], 15); (+)), (([0, 0, 0], 16); (−))} .

The non-trivial multiplicities ofγ ∈ 0 must also be taken into account. To obtain the
splitting one can choose the vectorε = (1, 1, 1, 1). We write down explicitly only those
weightsγ that describe the first and the second levels of decomposition:

0(A3 ⊕ u(1) → B4) =
⋃

ξs ,s=1,...,15

8ξs ; sign(γ )

= {
(1, 0, 0, 0)(+), (0, 1, 0, 0)(+), (0, 0, 1, 0)(+), (0, 0, 0, 1)(+), (2, 1, 0, 0)(−),

(2, 0, 1, 0)(−), (2, 0, 0, 1)(−), (1, 0, 0, 2)(−), (0, 1, 0, 2)(−), (0, 0, 1, 2)(−),

(1, 2, 0, 0)(−), (0, 2, 1, 0)(−), (0, 2, 0, 1)(−), (1, 0, 2, 0)(−), (0, 1, 2, 0)(−),

(0, 0, 2, 1)(−), 2(1, 1, 1, 0)(−), 2(1, 1, 0, 1)(−), 2(1, 0, 1, 1)(−), 2(0, 1, 1, 1)(−),

. . . , (4, 4, 4, 4)(−)
}
.

Consider, for example, the irrepLλ(B4) with λ = (2, 2, 1, 0); dim Lλ = (1650). It has
11 levels. Due to the reflection symmetry ((k1, k2, k3, k4) ↔ (−k1,−k2,−k3,−k4)) of the
weight diagram it is sufficient to study only six of them.

In contrast to the previous case, the recurrence procedure cannot be performed separately

for the relative multiplicitiesnκ , that is for ñκ with κ ∈ C̃. Nevertheless, the calculations
involving the anomalous weights (in other Weyl chambers) can be simplified considerably
thanks to the following two considerations:

• In the level-by-level recursive procedure, after the evaluation ofñ in C̃, the anomalous
relative weights in other points can be obtained using the Weyl groupV .

• Using the exterior contour of0 one can easily fix the domain of the weight space
that can contribute to the relative multiplicitiesnκ and pay no attention to the weights
outside this domain.
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For the injectionA3 ⊕ u(1) → B4 only the anomalous weights with non-negative first

coordinate must be taken into account to obtainñ ∈ C̃. Thus for every highest weightµ
obtained one must find only twelve anomalous points of9µ to be able to carry the recursion
to the next level. At the zeroth level, besides the highest weight

n(2,2,1,0) = ñ(2,2,1,0) = 1

one must also calculate (using the Weyl groupV ) the anomalous relative multiplicities:

ñ(2,2,−1,2) = −1 ñ(2,0,3,0) = −1 ñ(2,0,−1,4) = 1 ñ(2,−2,3,2) = 1

ñ(2,−2,1,4) = −1 ñ(1,3,1,0) = −1 ñ(1,3,−1,2) = 1 ñ(1,0,4,0) = 1

ñ(1,0,−1,5) = −1 ñ(1,−2,4,2) = −1 ñ(1,−2,1,5) = 1.

After this equation (18) can be applied directly to obtain the anomalous relative multiplicities
at the first level, among them being

n(2,2,0,0) = 1 n(2,1,1,0) = 1.

The 24 anomalous points of these two representations fix the decomposition at the second
level:

n(2,1,0,0) = 2 n(1,1,1,0) = 1 n(2,1,1,−1) = 1 n(2,2,0,−1) = 1

and so on. For example, at the third level equation (18) leads to the following relation for
the weight(1, 1, 0, 0):

ñ(1,1,0,0) = n(1,1,0,0) = n(1,1,1,0) + n(2,1,0,0) − 2n(2,2,1,0) − ñ(1,3,1,0) = 2.

The final result is

[0, 1, 1, 0]↓A3⊕u(1) = ([0, 1, 1], 5)⊕ ([0, 2, 0], 4)⊕ ([1, 0, 1], 4)⊕ 2([1, 1, 0], 3)

⊕([0, 0, 1], 3)⊕ ([1, 0, 2], 3)⊕ ([0, 2, 1], 3)⊕ ([2, 0, 0], 2)

⊕2([0, 1, 0], 2)⊕ ([0, 0, 2], 2)⊕ 2([1, 1, 1], 2)⊕ 2([1, 0, 0], 1)

⊕2([2, 0, 1], 1)⊕ 3([0, 1, 1], 1)⊕ ([1, 1, 2], 1)⊕ ([1, 2, 0], 1)

⊕([0, 0, 0], 0)⊕ 3([1, 0, 1], 0)⊕ 2([0, 2, 0], 0)⊕ ([2, 0, 2], 0)

⊕([2, 1, 0], 0)⊕ ([0, 1, 2], 0)⊕ 2([1, 0, 2],−1)⊕ 2([0, 0, 1],−1)

⊕2([1, 1, 1],−2)⊕ ([2, 0, 0],−2)⊕ 2([0, 1, 0],−2)⊕ ([0, 0, 2],−2)

⊕([1, 2, 0],−3)⊕ ([2, 0, 1],−3)⊕ ([1, 0, 0],−3)⊕ 2([0, 1, 1],−3)

⊕([1, 0, 1],−4)⊕ ([0, 2, 0],−4)⊕ ([1, 1, 0],−5).
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